
© NEC Corporation 2023

Introducing FireDucks: A must have DataFrame library
to speedup your Pandas workload at zero manual cost

Sep 26, 2024, Thursday

Sourav Saha (NEC)

© NEC Corporation 20232

Workflow of a Data Scientist

collection
of raw
data

deploy

almost 75% efforts of a Data

Scientist spent on data

preparation

Anaconda:
The State of Data Science 2020

Analysis

data
lake

data
preparation

AI/ML
training model

© NEC Corporation 20233

About Pandas

0 50 100 150

numpy

pandas

scipy

scikit-learn

matplotlib

pyspark

networkx

tensorflow

nltk

seaborn

pytorch

Monthly download from pypi.org
(Data Analytics Libraries)

◆Most popular Python library for data analytics.

• Most of its operations are single-threaded.
• The way of defining a query in pandas heavily

impacts its performance!!

• Some of the high-performance pandas alternatives
compel a user to learn completely new APIs

• Some of the others demand for paying extra
hardware cost.

• We at NEC R&D Lab Japan, have developed a
high-performance compiler-accelerated
DataFrame library, named FireDucks with highly
compatible pandas APIs to address the above
issues.

© NEC Corporation 20234

Introducing FireDucks

(Flexible IR Engine for DataFrame) is a
high-performance compiler-accelerated DataFrame
library with highly compatible pandas APIs.

Speed: significantly faster than pandas

Ease of use: drop-in replacement of pandas

• FireDucks is multithreaded to fully exploit the modern processor
• Lazy execution model with Just-In-Time optimization using a defined-

by-run mechanism supported by MLIR (a subproject of LLVM).
• supports both lazy and non-lazy execution models without

modifying user programs (same API).

• FireDucks is highly compatible with pandas API
• seamless integration is possible not only for an existing pandas

program but also for any external libraries (like seaborn, scikit-
learn, etc.) that internally use pandas dataframes.

• No extra learning is required
• No code modification is required

Lazy
JIT optimization

Multi-Threaded

Eco-friendly

lightning-fast

data analysis

No new learning

$

Cloud-friendly

※IR: Intermediate Representation

© NEC Corporation 20235

How does it work?

Generated

IR-OPs

User Program

Optimization

Passes

IR Builder

Result = df.sort_values(“A”)
.query(“B > 1”)[“E”]
.head(2)

%v2 = “sort_values_op"(%v1, “A")
%v3 = "filter_op"(%v2, “B > 1”)
%v4 = “project_op”(%v3, [“E”])
%v5 = “slice_op”(%v4, 2)

%t1 = “project_op”(%v1, [“A”, “B”, “E”])
%t2 = "filter_op"(%t1, “B > 1”)
%t3 = “sort_values_op"(%t2, “A")
%t4 = “project_op”(%t3, [“E”])
%t5 = “slice_op”(%t4, 2)

t1 = backend::project_columns(df, {“A”, “B”, “C”});
t2 = backend::filter_rows(t1, “B > 1”);
t3 = backend::sort_values(t2, “A”);
t4 = backend::project_columns(t3, {“E”});
return backend::slice_rows(t4, 2);

print (result)

Primary Objective: Write Once, Execute Anywhere

pandas APIs

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernel

© NEC Corporation 20236

Let’s Have a Quick Demo!

pandas FireDucks

button to
start
execution

pd.read_csv(“data.csv”).rolling(60).mean()[“Close”].tail(1000).plot()

Program to
calculate
moving average

pandas: 4.06s

FireDucks: 275ms

~15x

the difference is only in the import

import pandas as pd import fireducks.pandas as pd

data.csv:
Bitcoin Historical Data

https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?select=bitstampUSD_1-min_data_2012-01-01_to_2021-03-31.csv

© NEC Corporation 20237

Usage of FireDucks

2. Import Hook (monkey-patch)

$ python –m fireducks.pandas program.py

FireDucks provides command line option to automatically replace “pandas” with “fireducks.pandas”

zero code modification

1. Explicit Import

import pandas as pd
import fireducks.pandas as pd

easy to import

simply change the

import statement

3. Notebook Extension

%load_ext fireducks.pandas
import pandas as pd

FireDucks provides simple import extension for interative notebooks.

simple integration in

a notebook

import mod_A
import mod_B
import mod_C
import pandas as pd
:

import pandas as pd
:

import pandas as pd
:

import pandas as pd
:

mod_A.py

mod_B.py

mod_C.py

program.py

© NEC Corporation 20238

Benchmark (1): DB-Benchmark

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark)

© NEC Corporation 20239

Benchmark (2): Speedup from pandas in TPC-H benchmark

FireDucks is ~345x faster than pandas at max Xeon Gold 5317 x2
(24 cores), 256GB

Server

Comparison of
DataFrame libraries
(average speedup)

FireDucks

Polars

Modin

50x

39x

0.9x

fa
s
te

r
th

a
n

 p
a
n

d
a
s

s
lo

w
e
r

0.1

1

10

100

1000

Speedup from pandas 2.2.2 (scale factor = 10)

modin 0.31.0 polars 1.6.0 fireducks 1.0.3

© NEC Corporation 202310

Resource on FireDucks

https://fireducks-dev.github.io

Web site (User guide, benchmark, blog)

X(twitter) (Release information)

https://x.com/fireducksdev
(@fireducksdev)

Github (Issue report)

https://github.com/fireducks-dev/fireducks

Q/A, communication

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

https://fireducks-dev.github.io/
https://x.com/fireducksdev
https://github.com/fireducks-dev/fireducks
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202311

◆Focus more on in-depth data exploration
using “Pandas”.

◆Let the “FireDucks” take care of the
optimization for you.

◆Enjoy Green Computing!

Thank You!

We would love to see you at our booth for any queries related to
FireDucks.

Frequently Asked Questions

© NEC Corporation 202313

FAQ: Why FireDucks is highly compatible with pandas?

library - A pandas

from_pandas()

to_pandas()

%load_ext fireducks.pandas ← notebook extension for importhook

import pandas as pd

import numpy as np

%%fireducks.profile ← notebook specific profiler

df = pd.DataFrame({

"id": np.random.choice(list("abcdef"), 10000),

"val": np.random.choice(100, 10000)

})

r1 =(

df.sort_values("id")

.groupby("id")

.head(2)

.reset_index(drop=True)

)

r1["val"] = r1["val"].cumsum()

r1.describe()

When running a python script/program, you
may like to set the environment variable to get

fallback warning logs:
FIREDUCKS_FLAGS=“-Wfallback”

Raise feature request when you encounter
some expensive fallback hindering your
program performance!

Directly communicate with us over our slack
channel for any performance or API related
queries!

Python Frontend
(Pandas API)

fallback

IR Builder

FireDucks

pd.from_pandas(r1[“val”].to_pandas().cumsum())

https://github.com/fireducks-dev/fireducks/issues
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202314

FAQ: How to evaluate Lazy Execution?

def foo(employee, country):
stime = time.time()
m = employee.merge(country, on=“C_Code”)
r = m[m[“Gender”] == “Male”]
print(f”fireducks time: {time.time() – stime} sec”)
return r

IR Builder

create_data_op(…)
merge_op(…)
filter_op(…)

def foo(employee, country):
employee._evaluate()
country._evaluate()
stime = time.time()
m = employee.merge(country, on=“C_Code”)
r = m[m[“Gender”] == “Male”]
r._evaluate()
print(f”fireducks time: {time.time() – stime} sec”)
return r

fireducks time: 0.0000123 sec

fireducks time: 0.02372143 sec

FIREDUCKS_FLAGS="--benchmark-mode”

Use this to disable lazy-execution mode
when you do not want to make any
changes in your existing application
during performance evaluation.

© NEC Corporation 202315

FAQ: How to configure number of cores to be used?

OMP_NUM_THREADS=1

Use this to stop parallel execution, or configure this with the intended
number of cores to be used

Alternatively, you can use the Linux taskset command to bind your
program with specific CPU cores.

	Title Slide_B
	スライド 1: Introducing FireDucks: A must have DataFrame library to speedup your Pandas workload at zero manual cost

	Body
	スライド 2: Workflow of a Data Scientist
	スライド 3: About Pandas
	スライド 4: Introducing FireDucks
	スライド 5: How does it work?
	スライド 6: Let’s Have a Quick Demo!
	スライド 7: Usage of FireDucks
	スライド 8: Benchmark (1): DB-Benchmark
	スライド 9: Benchmark (2): Speedup from pandas in TPC-H benchmark
	スライド 10: Resource on FireDucks
	スライド 11: Thank You!
	スライド 12: Frequently Asked Questions
	スライド 13: FAQ: Why FireDucks is highly compatible with pandas?
	スライド 14: FAQ: How to evaluate Lazy Execution?
	スライド 15: FAQ: How to configure number of cores to be used?

	Purpose_B
	スライド 16

	Corporate Mark
	スライド 17

