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Quick Introduction!

SOURAV SAHA – Research Engineer @ NEC Corporation

Hello, I am a software professional with 11+ years of working experience across diverse areas of HPC, Vector
Supercomputing, Distributed Programming, Big Data and Machine Learning. Currently, my team at NEC R&D Lab,
Japan, is researching various data processing-related algorithms. Blending the mixture of different niche technologies
related to compiler framework, high-performance computing, and multi-threaded programming, we have developed a
Python library named FireDucks with highly compatible pandas APIs for DataFrame-related operations.

https://www.nec.com/en/global/solutions/hpc/sx/index.html

Data 
Scientists 
often face 
issues with 
slow 
performance 
of pandas

we wanted to 
develop some library 

using compiler 
technology

we wanted to 
speed-up python

User Program

compiler
technologies

FireDucks

groupby join

dropna filter

sort corr

pandas APIMr. Kazuhisa Ishizaka
(Primary Author)

https://www.linkedin.com/in/sourav-%E3%82%BD%E3%82%A6%E3%83%A9%E3%83%96-saha-%E3%82%B5%E3%83%8F-a5750259/

https://twitter.com/SouravSaha97589

https://twitter.com/SouravSaha97589
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Workflow of a Data Scientist

collection 
of raw 
data

deploy

almost 75% efforts of a Data 

Scientist spent on data 

preparation

Anaconda: 
The State of Data Science 2020

Analysis

data
lake

data
preparation

AI/ML
training model
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Pandas: Its Pros and Cons

 

◼ It (mostly) doesn’t support parallel computation.

◼ It doesn’t have any auto-optimization feature.

◼ The choice of API heavily impacts the performance of a 

pandas application.

◼ Very slow execution reduces the efficiency of a data 

analyst.

◼ Long-running execution 
◼ produces higher cloud costs

◼ attributes to higher CO2 emission 

0 50 100 150

numpy

pandas

scipy

scikit-learn

matplotlib

pyspark

networkx

tensorflow

nltk

seaborn

pytorch

Monthly download from pypi.org
(Data Analytics Libraries)

◆ Most popular Python library for data analytics.



© NEC Corporation 20236

Challenges in Migration from pandas

Three most common challenges in switching 

from pandas:

◼ Needs to learn new library and their interfaces.

◼ Manual fallback to pandas when the target library doesn’t 

support a method used in an existing pandas application.

◼ Performance can be evaluated, and results can be tested 

after the migration is completed.

library - A pandas

from_pandas()

to_pandas()

COST 

PERFORMANCE

highly-

compatible, but 

not that fast

faster, but not enough 

compatible (mainly suitable 

for multi-node computing)

blazingly fast for single-

node computation, but 

highly incompatible

faster, but not enough 

compatible (mainly 

suitable for multi-

node computing)
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Introducing FireDucks

(Flexible IR Engine for DataFrame) is a high-

performance compiler-accelerated DataFrame library with highly 

compatible pandas APIs.

Speed: significantly faster than pandas 

Ease of use: drop-in replacement of pandas 

• FireDucks is multithreaded to fully exploit the modern processor

• Lazy execution model with Just-In-Time optimization using a defined-by-run 

mechanism supported by MLIR (a subproject of LLVM).

• supports both lazy and non-lazy execution models without modifying user 

programs (same API). 

• FireDucks is highly compatible with pandas API

• seamless integration is possible not only for an existing pandas 

program but also for any external libraries (like seaborn, scikit-learn, 

etc.) that internally use pandas dataframes.

• No extra learning is required

• No code modification is required

Lazy
JIT optimization

Multi-Threaded

Eco-friendly

lightning-fast

data analysis

No new learning

 

Cloud-friendly
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Let’s Have a Quick Demo!

pandas FireDucks

button to 

start 

execution

pd.read_csv(“data.csv”).rolling(60).mean()[“Close”].tail(1000).plot()

Program to 

calculate moving 

average

pandas: 4.06s

FireDucks: 275ms

~15x

the difference is only in the import

import pandas as pd import fireducks.pandas as pd

data.csv: 
Bitcoin Historical Data

https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?select=bitstampUSD_1-min_data_2012-01-01_to_2021-03-31.csv
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Usage of FireDucks

2. Import Hook

$ python –m fireducks.pandas program.py 

FireDucks provides command line option to automatically replace “pandas” with “fireducks.pandas”

zero code modification

1. Explicit Import

# import pandas as pd
import fireducks.pandas as pd

easy to import

simply change the import statement

3. Notebook Extension

%load_ext fireducks.pandas
import pandas as pd

FireDucks provides simple import extension for interative notebooks.

simple integration in a notebook

import mod_A

import mod_B

import mod_C

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

mod_A.py

mod_B.py

mod_C.py

program.py
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Optimization Features

User Program

Runtime

Compiler

FireDucks

Library Function

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernel

compiler optimized program

python frontend with JIT compiler

1. Compiler Specific Optimizations: Common Sub-expression 

Elimination, Dead-code Elimination, Constant Folding etc.

2. Domain Specific Optimization: Optimization at query-level: 

reordering instructions etc.

3. Pandas Specific Optimization: selection of suitable pandas 

APIs, selection of suitable parameter etc.

1. Multi-threaded Computation: Leverage all the available 

computational cores.

2. Efficient Memory Management: Data Structures backed by 

Apache Arrow

3. Optimized Kernels: Patented algorithms for Database like 

kernel operations: like sorting, join, filter, groupby, dropna etc. 

developed in C++ from scratch.
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Compiler Specific Optimizations 

# Find year and month-wise average sales
df[“year”] = pd.to_datetime(df[“time”]).dt.year
df[“month”] = pd.to_datetime(df[“time”]).dt.month
r = df.groupby([“year”, “month”])[“sales”].mean()

s = pd.to_datetime(df[“time”])
df[“year”] = s.dt.year
df[“month”] = s.dt.month
r = df.groupby([“year”, “month”])[“sales”].mean()

def func(x: pd.DataFrame, y: pd.DataFrame): 
merged = x.merge(y, on="key") 
sorted = merged.sort_values(by="key")
return merged.groupby("key").max() 

def func(x: pd.DataFrame, y: pd.DataFrame): 
merged = x.merge(y, on="key") 
return merged.groupby("key").max()

Common Sub-expression Elimination Dead Code Elimination

Have you ever thought of speeding up your data analysis in pandas with a compiler?

• Common mistakes often found in Kaggle notebooks

• same operation on the same data repeatedly

• computation without further usage 

The in-built compiler of FireDucks can 

auto-detect such issues and optimize 

at runtime.

https://medium.com/@qsourav/have-you-ever-thought-of-speeding-up-your-data-analysis-in-pandas-with-a-compiler-198d2b6da0b8


© NEC Corporation 202312

Execution order matters to boost the performance of a data analysis tool

A B C D E

df.sort_values(“A”)

.query(“B > 1”)[“E”]

.head(2)

A B C D E

df.loc[:, [“A”, “B”, “E”]]

.query(“B > 1”)

.sort_values(“A”)[“E”]

.head(2)

A B C D E E

E

A B C D E A B E

A B E E

E

sort filter projection head
projection sort projection head

reduction in the 

number of 

columns

filter

reduction in 

the number 

of rows

SAMPLE QUERY OPTIMIZED QUERY

A B E

※ sort-order: yellow->red->green->blue

not required
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Exercise: Query #3 from TPC-H Benchmark (SQL -> pandas)

SELECT l_orderkey, 
sum(l_extendedprice * (1 - l_discount)) as revenue, 
o_orderdate, 
o_shippriority 

FROM customer, orders, lineitem 
WHERE 

c_mktsegment = 'BUILDING' AND 
c_custkey = o_custkey AND 
l_orderkey = o_orderkey AND 
o_orderdate < date '1995-03-15' AND 
l_shipdate > date '1995-03-15’ 

GROUP BY l_orderkey, o_orderdate, o_shippriority 
ORDER BY revenue desc, o_orderdate 
LIMIT 10; 

rescols = ["l_orderkey", “revenue”, "o_orderdate", "o_shippriority“]
result = (
customer.merge(orders, left_on="c_custkey", right_on="o_custkey")
.merge(lineitem, left_on="o_orderkey", right_on="l_orderkey")
.pipe(lambda df: df[df[“c_mktsegment"] == "BUILDING"])
.pipe(lambda df: df[df["o_orderdate"] < datetime(1995, 3, 15)])
.pipe(lambda df: df[df["l_shipdate"] > datetime(1995, 3, 15)])
.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
.agg({"revenue": "sum”})[rescols]
.sort_values(["revenue", "o_orderdate"], ascending=[False, True])
.head(10)

)

◆ query to retrieve the 10 unshipped orders with the highest value. 

https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf#page=33
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Exercise: Query #3 from TPC-H Benchmark (pandas -> optimized pandas)

# projection-filter: to reduce scope of “customer” table to be processed
cust = customer[[“c_custkey”, “c_mktsegment"]]
f_cust = cust[cust[“c_mktsegment"] == "BUILDING"]

# projection-filter: to reduce scope of “orders” table to be processed
ord = orders[[“o_custkey”, “o_orderkey”, “o_orderdate”, "o_shippriority"]]
f_ord = ord[ord["o_orderdate"] < datetime(1995, 3, 15)]

# projection-filter: to reduce scope of “lineitem” table to be processed
litem = lineitem[["l_orderkey“, "l_shipdate“, "l_extendedprice“, "l_discount"]]
f_litem = litem[litem["l_shipdate"] > datetime(1995, 3, 15)]

rescols = ["l_orderkey", “revenue”, "o_orderdate", "o_shippriority“]
result = ( f_cust.merge(f_ord, left_on="c_custkey", right_on="o_custkey")
.merge(f_litem, left_on="o_orderkey", right_on="l_orderkey")
.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
.pipe(lambda df: df[rescols])
.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
.agg({"revenue": "sum"})[rescols]
.sort_values(["revenue", "o_orderdate"], ascending=[False, True])
.head(10)

)

Exec-time: 68.55 s

Exec-time: 10.33 s

6.5x

Scale Factor: 10

rescols = ["l_orderkey", “revenue”, "o_orderdate", "o_shippriority“]
result = (
customer.merge(orders, left_on="c_custkey", right_on="o_custkey")
.merge(lineitem, left_on="o_orderkey", right_on="l_orderkey")
.pipe(lambda df: df[df[“c_mktsegment"] == "BUILDING"])
.pipe(lambda df: df[df["o_orderdate"] < datetime(1995, 3, 15)])
.pipe(lambda df: df[df["l_shipdate"] > datetime(1995, 3, 15)])
.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
.agg({"revenue": "sum”})[rescols]
.sort_values(["revenue", "o_orderdate"], ascending=[False, True])
.head(10)

)

Such domain specific 

optimizations can be 

performed by FireDucks 

automatically
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Pandas Specific Optimization – Parameter Tuning

res = (
employee.groupby(“department")[“salary"]

.mean()
.sort_values(ascending=False)

)

# department-wise average salaries sorted in descending order

department salary (USD)

IT 85,000

Admin 60,000

Finance 100,000

IT 81,000

Finance 95,000

Corporate 78,000

Sales 80,000

department salary (USD)

IT 85,000

IT 81,000

department salary (USD)

Admin 60,000

department salary (USD)

Finance 100,000

Finance 95,000

department salary (USD)

Corporate 78,000

department salary (USD)

Sales 80,000

department salary (USD)

IT 83,000

Admin 60,000

Finance 97,500

Corporate 78,000

Sales 80,000

department salary (USD)

Admin 60,000

Corporate 78,000

Finance 97,500

IT 83,000

Sales 80,000

department salary (USD)

Finance 97,500

IT 83,000

Sales 80,000

Corporate 78,000

Admin 60,000

res = (
employee.groupby(“department“, sort=False)[“salary"]

.mean()
.sort_values(ascending=False)

)

employee table

creating groups

group-wise average-salary group-wise average-salary 

sorted by “department”
group-wise average-salary 

sorted by “department”

groupby(“department“, sort=True)

parameter tuning in pandas

df.groupby(["A", "B"])["C"]

.mean()

.sort_values(ascending=False)

df.groupby(["A", "B"], sort=False)["C"]

.mean()

.sort_values(ascending=False)

~50 sec ~30 sec

100M samples 

with high-

cardinality
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How does FireDucks work?

Generated 

IR-OPs

User Program

Optimization

Passes

IR Builder

Multi-core Kernel

Executor

sorted = df.sort_values("b") 

result = sorted["a"] 

%v2 = "fireducks.sort_values"(%v1,"b") 

%v3 = "fireducks.project"(%v2,["a"])

%v11 = "fireducks.project"(%v1,["a","b"]) 

%v2 = "fireducks.sort_values"(%v11,"b") 

%v3 = "fireducks.project"(%v2,["a"])

tmp = df[["a","b"]] 

sorted = tmp.sort_values("b") 

result = sorted["a"] 

print (result)

※IR: Intermediate Representation

Primary Objective: Write Once, Execute Anywhere
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Benchmark (1): DB-Benchmark 

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark) 
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Benchmark (2): Speedup from pandas in TPC-H benchmark

0.1

1

10

100

Speedup from pandas 2.2.0 (Scale Factor=10)

modin 0.26.1 polars 0.20.7 fireducks 0.9.8

FireDucks is 95x faster than pandas at max Xeon Gold 5317 x2 
(24 cores), 256GB

Server

1.3

13x

18x

Comparison of 

DataFrame libraries

(average speedup)

FireDucks

Polars

Modin

18x

13x

1.3x

fa
st

e
r 

th
a
n

 p
a
n

d
a
s

sl
o

w
e
r
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Benchmark (3): Speedup from pandas in TPCx-BB benchmark

ETL(Extract, Transform, Load) and ML Workflow

1.3

13x

18x

• pandas-2.1.4
• fireducks-0.9.3

• CPU: Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz x 2sockets （Total 48HW Threads）
• Main memory: 256GB
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Resource on FireDucks

https://fireducks-dev.github.io/

Web site (User guide, benchmark, blog)

X(twitter) (Release information)

https://x.com/fireducksdev

Github (Issue report)

https://github.com/fireducks-dev/fireducks

Q/A, communication

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w
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Let’s go for a test drive!

https://colab.research.google.com/drive/1qpej-X7CZsIeOqKuhBg4kq-cbGuJf1Zp?usp=sharing



© NEC Corporation 202322

◆Focus more on in-depth data 
exploration using “pandas”.

◆Let the “FireDucks” take care 
of the optimization for you.

◆Enjoy Green Computing!

Thank You!



Frequently Asked Questions
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FAQ: Why FireDucks is highly compatible with pandas?

library - A pandas

from_pandas()

to_pandas()

%load_ext fireducks.pandas ← notebook extension for importhook

import pandas as pd

import numpy as np

%%fireducks.profile ← notebook specific profiler

df = pd.DataFrame({

"id": np.random.choice(list("abcdef"), 10000),                        

"val": np.random.choice(100, 10000)

})

r1 =( 

df.sort_values("id")

.groupby("id")

.head(2)

.reset_index(drop=True)

)

r1["val"] = r1["val"].cumsum()

r1.describe()

When running a python script/program, you may 

like to set the environment variable to get 

fallback warning logs:

FIREDUCKS_FLAGS=“-Wfallback” 

Raise feature request when you encounter some 

expensive fallback hindering your program 

performance!

Directly communicate with us over our slack 

channel for any performance or API related 

queries!

Python Frontend
(Pandas API)

fallback

IR Builder

FireDucks

pd.from_pandas(r1[“val”].to_pandas().cumsum())

https://github.com/fireducks-dev/fireducks/issues
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w
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FAQ: How to evaluate Lazy Execution?

def foo(employee, country):

stime = time.time()

m = employee.merge(country, on=“C_Code”)

r = m[m[“Gender”] == “Male”]

print(f”fireducks time: {time.time() – stime} sec”)

return r

IR Builder

create_data_op(…)

merge_op(…)

filter_op(…)

def foo(employee, country):

employee._evaluate()

country._evaluate()

stime = time.time()

m = employee.merge(country, on=“C_Code”)

r = m[m[“Gender”] == “Male”]

r._evaluate()

print(f”fireducks time: {time.time() – stime} sec”)

return r

fireducks time: 0.0000123 sec

fireducks time: 0.02372143 sec

FIREDUCKS_FLAGS="--benchmark-mode”

Use this to disable lazy-execution mode 

when you do not want to make any 

changes in your existing application during 

performance evaluation.
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FAQ: How to configure number of cores to be used?

OMP_NUM_THREADS=1

Use this to stop parallel execution, or configure this with the intended number 

of cores to be used

Alternatively, you can use the Linux taskset command to bind your program 

with specific CPU cores.
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