
© NEC Corporation 2023

Accelerate Pandas Scripts with 1 Line of Code
(FireDucks)

Aug 26, 2024

Sourav Saha (NEC)

© NEC Corporation 20232

◆Pandas: Its Pros & Cons

◆Migration challenges from pandas to another library

◆FireDucks and Its Offerings

◆Tips and Tricks of Optimizing Large-scale Data processing workload

◆FireDucks Optimization Strategy

◆Evaluation Benchmarks

◆Resources on FireDucks

◆Test Drive

◆FAQs

Agenda

© NEC Corporation 20233

Quick Introduction!

SOURAV SAHA – Research Engineer @ NEC Corporation

Hello, I am a software professional with 11+ years of working experience across diverse areas of HPC, Vector
Supercomputing, Distributed Programming, Big Data and Machine Learning. Currently, my team at NEC R&D Lab,
Japan, is researching various data processing-related algorithms. Blending the mixture of different niche technologies
related to compiler framework, high-performance computing, and multi-threaded programming, we have developed a
Python library named FireDucks with highly compatible pandas APIs for DataFrame-related operations.

https://www.nec.com/en/global/solutions/hpc/sx/index.html

Data
Scientists
often face
issues with
slow
performance
of pandas

we wanted to
develop some library

using compiler
technology

we wanted to
speed-up python

User Program

compiler
technologies

FireDucks

groupby join

dropna filter

sort corr

pandas APIMr. Kazuhisa Ishizaka
(Primary Author)

https://www.linkedin.com/in/sourav-%E3%82%BD%E3%82%A6%E3%83%A9%E3%83%96-saha-%E3%82%B5%E3%83%8F-a5750259/

https://twitter.com/SouravSaha97589

https://twitter.com/SouravSaha97589

© NEC Corporation 20234

Workflow of a Data Scientist

collection
of raw
data

deploy

almost 75% efforts of a Data

Scientist spent on data

preparation

Anaconda:
The State of Data Science 2020

Analysis

data
lake

data
preparation

AI/ML
training model

© NEC Corporation 20235

Pandas: Its Pros and Cons

◼ It (mostly) doesn’t support parallel computation.

◼ It doesn’t have any auto-optimization feature.

◼ The choice of API heavily impacts the performance of a

pandas application.

◼ Very slow execution reduces the efficiency of a data

analyst.

◼ Long-running execution
◼ produces higher cloud costs

◼ attributes to higher CO2 emission

0 50 100 150

numpy

pandas

scipy

scikit-learn

matplotlib

pyspark

networkx

tensorflow

nltk

seaborn

pytorch

Monthly download from pypi.org
(Data Analytics Libraries)

◆ Most popular Python library for data analytics.

© NEC Corporation 20236

Challenges in Migration from pandas

Three most common challenges in switching

from pandas:

◼ Needs to learn new library and their interfaces.

◼ Manual fallback to pandas when the target library doesn’t

support a method used in an existing pandas application.

◼ Performance can be evaluated, and results can be tested

after the migration is completed.

library - A pandas

from_pandas()

to_pandas()

COST

PERFORMANCE

highly-

compatible, but

not that fast

faster, but not enough

compatible (mainly suitable

for multi-node computing)

blazingly fast for single-

node computation, but

highly incompatible

faster, but not enough

compatible (mainly

suitable for multi-

node computing)

© NEC Corporation 20237

Introducing FireDucks

(Flexible IR Engine for DataFrame) is a high-

performance compiler-accelerated DataFrame library with highly

compatible pandas APIs.

Speed: significantly faster than pandas

Ease of use: drop-in replacement of pandas

• FireDucks is multithreaded to fully exploit the modern processor

• Lazy execution model with Just-In-Time optimization using a defined-by-run

mechanism supported by MLIR (a subproject of LLVM).

• supports both lazy and non-lazy execution models without modifying user

programs (same API).

• FireDucks is highly compatible with pandas API

• seamless integration is possible not only for an existing pandas

program but also for any external libraries (like seaborn, scikit-learn,

etc.) that internally use pandas dataframes.

• No extra learning is required

• No code modification is required

Lazy
JIT optimization

Multi-Threaded

Eco-friendly

lightning-fast

data analysis

No new learning

Cloud-friendly

© NEC Corporation 20238

Let’s Have a Quick Demo!

pandas FireDucks

button to

start

execution

pd.read_csv(“data.csv”).rolling(60).mean()[“Close”].tail(1000).plot()

Program to

calculate moving

average

pandas: 4.06s

FireDucks: 275ms

~15x

the difference is only in the import

import pandas as pd import fireducks.pandas as pd

data.csv:
Bitcoin Historical Data

https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?select=bitstampUSD_1-min_data_2012-01-01_to_2021-03-31.csv

© NEC Corporation 20239

Usage of FireDucks

2. Import Hook

$ python –m fireducks.pandas program.py

FireDucks provides command line option to automatically replace “pandas” with “fireducks.pandas”

zero code modification

1. Explicit Import

import pandas as pd
import fireducks.pandas as pd

easy to import

simply change the import statement

3. Notebook Extension

%load_ext fireducks.pandas
import pandas as pd

FireDucks provides simple import extension for interative notebooks.

simple integration in a notebook

import mod_A

import mod_B

import mod_C

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

mod_A.py

mod_B.py

mod_C.py

program.py

© NEC Corporation 202310

Optimization Features

User Program

Runtime

Compiler

FireDucks

Library Function

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernel

compiler optimized program

python frontend with JIT compiler

1. Compiler Specific Optimizations: Common Sub-expression

Elimination, Dead-code Elimination, Constant Folding etc.

2. Domain Specific Optimization: Optimization at query-level:

reordering instructions etc.

3. Pandas Specific Optimization: selection of suitable pandas

APIs, selection of suitable parameter etc.

1. Multi-threaded Computation: Leverage all the available

computational cores.

2. Efficient Memory Management: Data Structures backed by

Apache Arrow

3. Optimized Kernels: Patented algorithms for Database like

kernel operations: like sorting, join, filter, groupby, dropna etc.

developed in C++ from scratch.

© NEC Corporation 202311

Compiler Specific Optimizations

Find year and month-wise average sales
df[“year”] = pd.to_datetime(df[“time”]).dt.year
df[“month”] = pd.to_datetime(df[“time”]).dt.month
r = df.groupby([“year”, “month”])[“sales”].mean()

s = pd.to_datetime(df[“time”])
df[“year”] = s.dt.year
df[“month”] = s.dt.month
r = df.groupby([“year”, “month”])[“sales”].mean()

def func(x: pd.DataFrame, y: pd.DataFrame):
merged = x.merge(y, on="key")
sorted = merged.sort_values(by="key")
return merged.groupby("key").max()

def func(x: pd.DataFrame, y: pd.DataFrame):
merged = x.merge(y, on="key")
return merged.groupby("key").max()

Common Sub-expression Elimination Dead Code Elimination

Have you ever thought of speeding up your data analysis in pandas with a compiler?

• Common mistakes often found in Kaggle notebooks

• same operation on the same data repeatedly

• computation without further usage

The in-built compiler of FireDucks can

auto-detect such issues and optimize

at runtime.

https://medium.com/@qsourav/have-you-ever-thought-of-speeding-up-your-data-analysis-in-pandas-with-a-compiler-198d2b6da0b8

© NEC Corporation 202312

Execution order matters to boost the performance of a data analysis tool

A B C D E

df.sort_values(“A”)

.query(“B > 1”)[“E”]

.head(2)

A B C D E

df.loc[:, [“A”, “B”, “E”]]

.query(“B > 1”)

.sort_values(“A”)[“E”]

.head(2)

A B C D E E

E

A B C D E A B E

A B E E

E

sort filter projection head
projection sort projection head

reduction in the

number of

columns

filter

reduction in

the number

of rows

SAMPLE QUERY OPTIMIZED QUERY

A B E

※ sort-order: yellow->red->green->blue

not required

© NEC Corporation 202313

Exercise: Query #3 from TPC-H Benchmark (SQL -> pandas)

SELECT l_orderkey,
sum(l_extendedprice * (1 - l_discount)) as revenue,
o_orderdate,
o_shippriority

FROM customer, orders, lineitem
WHERE

c_mktsegment = 'BUILDING' AND
c_custkey = o_custkey AND
l_orderkey = o_orderkey AND
o_orderdate < date '1995-03-15' AND
l_shipdate > date '1995-03-15’

GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY revenue desc, o_orderdate
LIMIT 10;

rescols = ["l_orderkey", “revenue”, "o_orderdate", "o_shippriority“]
result = (
customer.merge(orders, left_on="c_custkey", right_on="o_custkey")
.merge(lineitem, left_on="o_orderkey", right_on="l_orderkey")
.pipe(lambda df: df[df[“c_mktsegment"] == "BUILDING"])
.pipe(lambda df: df[df["o_orderdate"] < datetime(1995, 3, 15)])
.pipe(lambda df: df[df["l_shipdate"] > datetime(1995, 3, 15)])
.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
.agg({"revenue": "sum”})[rescols]
.sort_values(["revenue", "o_orderdate"], ascending=[False, True])
.head(10)

)

◆ query to retrieve the 10 unshipped orders with the highest value.

https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf#page=33

© NEC Corporation 202314

Exercise: Query #3 from TPC-H Benchmark (pandas -> optimized pandas)

projection-filter: to reduce scope of “customer” table to be processed
cust = customer[[“c_custkey”, “c_mktsegment"]]
f_cust = cust[cust[“c_mktsegment"] == "BUILDING"]

projection-filter: to reduce scope of “orders” table to be processed
ord = orders[[“o_custkey”, “o_orderkey”, “o_orderdate”, "o_shippriority"]]
f_ord = ord[ord["o_orderdate"] < datetime(1995, 3, 15)]

projection-filter: to reduce scope of “lineitem” table to be processed
litem = lineitem[["l_orderkey“, "l_shipdate“, "l_extendedprice“, "l_discount"]]
f_litem = litem[litem["l_shipdate"] > datetime(1995, 3, 15)]

rescols = ["l_orderkey", “revenue”, "o_orderdate", "o_shippriority“]
result = (f_cust.merge(f_ord, left_on="c_custkey", right_on="o_custkey")
.merge(f_litem, left_on="o_orderkey", right_on="l_orderkey")
.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
.pipe(lambda df: df[rescols])
.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
.agg({"revenue": "sum"})[rescols]
.sort_values(["revenue", "o_orderdate"], ascending=[False, True])
.head(10)

)

Exec-time: 68.55 s

Exec-time: 10.33 s

6.5x

Scale Factor: 10

rescols = ["l_orderkey", “revenue”, "o_orderdate", "o_shippriority“]
result = (
customer.merge(orders, left_on="c_custkey", right_on="o_custkey")
.merge(lineitem, left_on="o_orderkey", right_on="l_orderkey")
.pipe(lambda df: df[df[“c_mktsegment"] == "BUILDING"])
.pipe(lambda df: df[df["o_orderdate"] < datetime(1995, 3, 15)])
.pipe(lambda df: df[df["l_shipdate"] > datetime(1995, 3, 15)])
.assign(revenue=lambda df: df["l_extendedprice"] * (1 - df["l_discount"]))
.groupby(["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False)
.agg({"revenue": "sum”})[rescols]
.sort_values(["revenue", "o_orderdate"], ascending=[False, True])
.head(10)

)

Such domain specific

optimizations can be

performed by FireDucks

automatically

© NEC Corporation 202315

Pandas Specific Optimization – Parameter Tuning

res = (
employee.groupby(“department")[“salary"]

.mean()
.sort_values(ascending=False)

)

department-wise average salaries sorted in descending order

department salary (USD)

IT 85,000

Admin 60,000

Finance 100,000

IT 81,000

Finance 95,000

Corporate 78,000

Sales 80,000

department salary (USD)

IT 85,000

IT 81,000

department salary (USD)

Admin 60,000

department salary (USD)

Finance 100,000

Finance 95,000

department salary (USD)

Corporate 78,000

department salary (USD)

Sales 80,000

department salary (USD)

IT 83,000

Admin 60,000

Finance 97,500

Corporate 78,000

Sales 80,000

department salary (USD)

Admin 60,000

Corporate 78,000

Finance 97,500

IT 83,000

Sales 80,000

department salary (USD)

Finance 97,500

IT 83,000

Sales 80,000

Corporate 78,000

Admin 60,000

res = (
employee.groupby(“department“, sort=False)[“salary"]

.mean()
.sort_values(ascending=False)

)

employee table

creating groups

group-wise average-salary group-wise average-salary

sorted by “department”
group-wise average-salary

sorted by “department”

groupby(“department“, sort=True)

parameter tuning in pandas

df.groupby(["A", "B"])["C"]

.mean()

.sort_values(ascending=False)

df.groupby(["A", "B"], sort=False)["C"]

.mean()

.sort_values(ascending=False)

~50 sec ~30 sec

100M samples

with high-

cardinality

© NEC Corporation 202316

How does FireDucks work?

Generated

IR-OPs

User Program

Optimization

Passes

IR Builder

Multi-core Kernel

Executor

sorted = df.sort_values("b")

result = sorted["a"]

%v2 = "fireducks.sort_values"(%v1,"b")

%v3 = "fireducks.project"(%v2,["a"])

%v11 = "fireducks.project"(%v1,["a","b"])

%v2 = "fireducks.sort_values"(%v11,"b")

%v3 = "fireducks.project"(%v2,["a"])

tmp = df[["a","b"]]

sorted = tmp.sort_values("b")

result = sorted["a"]

print (result)

※IR: Intermediate Representation

Primary Objective: Write Once, Execute Anywhere

© NEC Corporation 202317

Benchmark (1): DB-Benchmark

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark)

© NEC Corporation 202318

Benchmark (2): Speedup from pandas in TPC-H benchmark

0.1

1

10

100

Speedup from pandas 2.2.0 (Scale Factor=10)

modin 0.26.1 polars 0.20.7 fireducks 0.9.8

FireDucks is 95x faster than pandas at max Xeon Gold 5317 x2
(24 cores), 256GB

Server

1.3

13x

18x

Comparison of

DataFrame libraries

(average speedup)

FireDucks

Polars

Modin

18x

13x

1.3x

fa
st

e
r

th
a
n

 p
a
n

d
a
s

sl
o

w
e
r

© NEC Corporation 202319

Benchmark (3): Speedup from pandas in TPCx-BB benchmark

ETL(Extract, Transform, Load) and ML Workflow

1.3

13x

18x

• pandas-2.1.4
• fireducks-0.9.3

• CPU: Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz x 2sockets （Total 48HW Threads）
• Main memory: 256GB

© NEC Corporation 202320

Resource on FireDucks

https://fireducks-dev.github.io/

Web site (User guide, benchmark, blog)

X(twitter) (Release information)

https://x.com/fireducksdev

Github (Issue report)

https://github.com/fireducks-dev/fireducks

Q/A, communication

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202321

Let’s go for a test drive!

https://colab.research.google.com/drive/1qpej-X7CZsIeOqKuhBg4kq-cbGuJf1Zp?usp=sharing

© NEC Corporation 202322

◆Focus more on in-depth data
exploration using “pandas”.

◆Let the “FireDucks” take care
of the optimization for you.

◆Enjoy Green Computing!

Thank You!

Frequently Asked Questions

© NEC Corporation 202324

FAQ: Why FireDucks is highly compatible with pandas?

library - A pandas

from_pandas()

to_pandas()

%load_ext fireducks.pandas ← notebook extension for importhook

import pandas as pd

import numpy as np

%%fireducks.profile ← notebook specific profiler

df = pd.DataFrame({

"id": np.random.choice(list("abcdef"), 10000),

"val": np.random.choice(100, 10000)

})

r1 =(

df.sort_values("id")

.groupby("id")

.head(2)

.reset_index(drop=True)

)

r1["val"] = r1["val"].cumsum()

r1.describe()

When running a python script/program, you may

like to set the environment variable to get

fallback warning logs:

FIREDUCKS_FLAGS=“-Wfallback”

Raise feature request when you encounter some

expensive fallback hindering your program

performance!

Directly communicate with us over our slack

channel for any performance or API related

queries!

Python Frontend
(Pandas API)

fallback

IR Builder

FireDucks

pd.from_pandas(r1[“val”].to_pandas().cumsum())

https://github.com/fireducks-dev/fireducks/issues
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202325

FAQ: How to evaluate Lazy Execution?

def foo(employee, country):

stime = time.time()

m = employee.merge(country, on=“C_Code”)

r = m[m[“Gender”] == “Male”]

print(f”fireducks time: {time.time() – stime} sec”)

return r

IR Builder

create_data_op(…)

merge_op(…)

filter_op(…)

def foo(employee, country):

employee._evaluate()

country._evaluate()

stime = time.time()

m = employee.merge(country, on=“C_Code”)

r = m[m[“Gender”] == “Male”]

r._evaluate()

print(f”fireducks time: {time.time() – stime} sec”)

return r

fireducks time: 0.0000123 sec

fireducks time: 0.02372143 sec

FIREDUCKS_FLAGS="--benchmark-mode”

Use this to disable lazy-execution mode

when you do not want to make any

changes in your existing application during

performance evaluation.

© NEC Corporation 202326

FAQ: How to configure number of cores to be used?

OMP_NUM_THREADS=1

Use this to stop parallel execution, or configure this with the intended number

of cores to be used

Alternatively, you can use the Linux taskset command to bind your program

with specific CPU cores.

	Title Slide_B
	スライド 1: Accelerate Pandas Scripts with 1 Line of Code (FireDucks)

	Body
	スライド 2: Agenda
	スライド 3: Quick Introduction!
	スライド 4: Workflow of a Data Scientist
	スライド 5: Pandas: Its Pros and Cons
	スライド 6: Challenges in Migration from pandas
	スライド 7: Introducing FireDucks
	スライド 8: Let’s Have a Quick Demo!
	スライド 9: Usage of FireDucks
	スライド 10: Optimization Features
	スライド 11: Compiler Specific Optimizations
	スライド 12: Execution order matters to boost the performance of a data analysis tool
	スライド 13: Exercise: Query #3 from TPC-H Benchmark (SQL -> pandas)
	スライド 14: Exercise: Query #3 from TPC-H Benchmark (pandas -> optimized pandas)
	スライド 15: Pandas Specific Optimization – Parameter Tuning
	スライド 16: How does FireDucks work?
	スライド 17: Benchmark (1): DB-Benchmark
	スライド 18: Benchmark (2): Speedup from pandas in TPC-H benchmark
	スライド 19: Benchmark (3): Speedup from pandas in TPCx-BB benchmark
	スライド 20: Resource on FireDucks
	スライド 21: Let’s go for a test drive!
	スライド 22: Thank You!
	スライド 23: Frequently Asked Questions
	スライド 24: FAQ: Why FireDucks is highly compatible with pandas?
	スライド 25: FAQ: How to evaluate Lazy Execution?
	スライド 26: FAQ: How to configure number of cores to be used?

	Purpose_B
	スライド 27

	Corporate Mark
	スライド 28

