
© NEC Corporation 2023

Introducing FireDucks:
A High-performance Compiler-accelerated DataFrame Library

July 25, 2024

Sourav Saha (NEC)

© NEC Corporation 20232

Quick Introduction!

SOURAV SAHA – Research Engineer @ NEC Corporation

Hello, I am a software professional with 11+ years of working experience across diverse areas of HPC, Vector
Supercomputing, Distributed Programming, Big Data and Machine Learning. Currently, my team at NEC R&D Lab,
Japan, is researching various data processing-related algorithms. Blending the mixture of different niche technologies
related to compiler framework, high-performance computing, and multi-threaded programming, we have developed a
Python library named FireDucks with highly compatible pandas APIs for DataFrame-related operations.

https://www.nec.com/en/global/solutions/hpc/sx/index.html

Data
Scientists
often face
issues with
slow
performance
of pandas

we wanted to
develop some library

using compiler
technology

we wanted to
speed-up python

User Program

compiler
technologies

FireDucks

groupby join

dropna filter

sort corr

pandas APIMr. Kazuhisa Ishizaka
(Primary Author)

https://www.linkedin.com/in/sourav-%E3%82%BD%E3%82%A6%E3%83%A9%E3%83%96-saha-%E3%82%B5%E3%83%8F-a5750259/

https://twitter.com/SouravSaha97589

https://twitter.com/SouravSaha97589

© NEC Corporation 20233

Workflow of a Data Scientist

Analysis

collection
of raw data

deploydata
lake

training
data

AI/ML
training model

almost 70% of efforts

of a Data Scientist

Anaconda:
The State of Data Science 2020

Normal

Workflow
Ideal

Workflow

src: https://blogs.nvidia.com/blog/accelerated-data-science-hpc/

© NEC Corporation 20234

◆DataFrame is a tabular data structure used for table data analysis.

◆ Table data is often used in data analytics to solve business problems.

Background: What is DataFrame?

https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data

Bitcoin historical prices

Data used in data analytics

Table data

cu
sto

m
e
r d

a
ta

fin
a
n

cia
l d

a
ta

d
a
ily

 w
o

rk
 lo

g

p
o

s d
a
ta

e
-m

a
il

e
-co

m
m

e
rce

 d
a
ta

a
cce

ss lo
g

Ministry of Internal Affairs and Communications, Japan, 2020

https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r02/html/ne220000.html

(partially edited by NEC)

m
o

b
ile

 p
h

o
n

e

p
h

o
n

e

C
T
I a

u
d

io
 d

a
ta

5yrs ago now

© NEC Corporation 20235

Background: What is pandas?

0 50 100 150

numpy

pandas

scipy

scikit-learn

matplotlib

pyspark

networkx

tensorflow

nltk

seaborn

pytorch

Monthly download from pypi.org
(Data Analytics Libraries)

100M 150M50M

https://www.udemy.com/ja/topic/pandas/

Books

Courses

◆Most popular Python library for data analytics.

© NEC Corporation 20236

Challenges in Data Manipulation with pandas

◼ It (mostly) doesn’t support parallel computation.

◼ It doesn’t have any auto-optimization feature.

◼ The choice of API heavily impacts the performance of

a pandas application.

◼ Very slow execution reduces the efficiency of a data

analyst.

◼ Long-running execution
◼ produces higher cloud costs

◼ attributes to higher CO2 emission

© NEC Corporation 20237

Challenges in Migration from pandas

High Migration Cost:

◼ Needs to learn new library and their

interfaces

◼ Manual fallback to pandas when target

library doesn’t support a method used in an

existing pandas application

◼ Performance can be evaluated, and result

can be tested after the migration completes.

library - A pandas

from_pandas()

to_pandas()

High Hardware Cost:

◼ Needs to upgrade the existing execution

system to leverage high-spec CPU, GPU etc.

◼ High-spec system incurs additional cost.

© NEC Corporation 20238

Introducing FireDucks

FireDucks (Flexible IR Engine for DataFrame) is a high-

performance compiler-accelerated DataFrame library

with highly compatible pandas APIs.

Speed: significantly faster than pandas

Ease of use: drop-in replacement of pandas

• FireDucks is multithreaded to fully exploit modern processor

• FireDucks optimizes user program at runtime by embedded

runtime compiler

• FireDucks is highly compatible with pandas API

• No extra learning is required

• No code modification is required

© NEC Corporation 20239

Usage of FireDucks

2. Import Hook

$ python –m fireducks.pandas program.py

FireDucks provides command line option to automatically replace “pandas” with “fireducks.pandas”

zero code modification

1. Explicit Import

import pandas as pd
import fireducks.pandas as pd

easy to import

simply change the import statement

3. Notebook Extension

%load_ext fireducks.pandas
import pandas as pd

FireDucks provides simple import extension for interative notebooks.

simple integration in a notebook

import mod_A

import mod_B

import mod_C

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

mod_A.py

mod_B.py

mod_C.py

program.py

© NEC Corporation 202310

Demo

pandas FireDucks

button to

start

execution

pd.read_csv(“data.csv”).rolling(60).mean()[“Close”].tail(1000).plot()

Program to

calculate moving

average

pandas: 4.06s

FireDucks: 275ms

~15x

the difference is only in the import

import pandas as pd import fireducks.pandas as pd

data.csv:
Bitcoin Historical Data

https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data?select=bitstampUSD_1-min_data_2012-01-01_to_2021-03-31.csv

© NEC Corporation 202311

Why FireDucks is faster?

User Program

Library Function

User Program

Runtime

Compiler

python frontend

pandas FireDucks

Library Function

Core

memory

CoreCore Core

Unused

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernelsingle-core execution kernel

compiler optimized programuser program (as it is)

python frontend with JIT compiler

© NEC Corporation 202312

Benchmark (1): DB-Benchmark

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark)

© NEC Corporation 202313

Benchmark (2): Speedup from pandas in TPC-H benchmark

0.1

1

10

100

Speedup from pandas 2.2.0 (Scale Factor=10)

modin 0.26.1 polars 0.20.7 fireducks 0.9.8

FireDucks is 95x faster than pandas at max Xeon Gold 5317 x2
(24 cores), 256GB

Server

1.3

13x

18x

Comparison of

DataFrame libraries

(average speedup)

FireDucks

Polars

Modin

18x

13x

1.3x

fa
st

e
r

th
a
n

 p
a
n

d
a
s

sl
o

w
e
r

© NEC Corporation 202314

Benchmark (3): Speedup from pandas in TPCx-BB benchmark

ETL(Extract, Transform, Load) and ML Workflow

1.3

13x

18x

• pandas-2.1.4
• fireducks-0.9.3

• CPU: Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz x 2sockets （Total 48HW Threads）
• Main memory: 256GB

© NEC Corporation 202315

Resource on FireDucks

https://fireducks-dev.github.io/

Web site (User guide, benchmark, blog)

X(twitter) (Release information)

https://x.com/fireducksdev

Github (Issue report)

https://github.com/fireducks-dev/fireducks

Q/A, communication

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202316

Comparison Among Several Python DataFrame Libraries

Library Name
pandas

compatibility

single-node

performance

multi-mode

performance

FireDucks 〇 〇 ×

Polars × 〇 ×

Modin 〇 △ 〇

Dask/Vaex △ △ 〇

Pandas 〇 × ×

© NEC Corporation 202317

User feedback

Due to a significant reduction in execution time,

I can now focus more on in-depth data analysis.

Easy integration in an existing application in just

30 mins!

© NEC Corporation 2023

Further Technical Details

© NEC Corporation 202319

Optimization Features

User Program

Runtime

Compiler

FireDucks

Library Function

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernel

compiler optimized program

python frontend with JIT compiler

1. Compiler Specific Optimizations: Common Sub-expression

Elimination, Dead-code Elimination, Constant Folding etc.

2. Domain Specific Optimization: Optimization at query-level:

reordering instructions etc.

3. Pandas Specific Optimization: selection of suitable pandas

APIs, selection of suitable parameter etc.

1. Multi-threaded Computation: Leverage all the available

computational cores.

2. Efficient Memory Management: Data Structures backed by

Apache Arrow

3. Optimized Kernels: Patented algorithms for Database like

kernel operations: like sorting, join, filter, groupby, dropna etc.

developed in C++ from scratch.

© NEC Corporation 202320

Domain Specific Optimization (Example #1)

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7

1 6 B 2 3 6 3 4 7 8 4

2 5 D 2 4 7 2 3 3 7 8

3 2 A 3 2 8 5 3 2 4 5

4 3 C 5 9 2 3 2 6 2 6

5 8 B 8 1 5 7 1 5 8 3

sorted = df.sort_values(“b”)

-> sidx = [0, 3,1, 5, 4, 2] # get sorted index

-> sorted = df.take(sidx) # materialize result

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7

3 2 A 3 2 8 5 3 2 4 5

1 6 B 2 3 6 3 4 7 8 4

5 8 B 8 1 5 7 1 5 8 3

4 3 C 5 9 2 3 2 6 2 6

2 5 D 2 4 7 2 3 3 7 8

index a

0 1

3 2

1 6

5 8

4 3

2 5

result = sorted[“a”]
result = sorted[“a”]

index a b

0 1 A

1 6 B

2 5 D

3 2 A

4 3 C

5 8 B

index a b

0 1 A

3 2 A

1 6 B

5 8 B

4 3 C

2 5 D

index a

0 1

3 2

1 6

5 8

4 3

2 5

tmp = df[[“a”, “b”]]

sorted = tmp.sort_values(“b”)

-> sidx = [0, 3, 1, 5, 4, 2]

-> sorted = tmp.take(sidx)

sorted = df.sort_values("b")

result = sorted["a"]

tmp = df[["a","b"]]

sorted = tmp.sort_values("b")

result = sorted["a"]

projection pushdown

Waste of computational memory

and execution time

© NEC Corporation 202321

How does FireDucks Work?

Generated

IR-OPs

User Program

Optimization

Passes

IR Builder

Multi-core Kernel

Executor

sorted = df.sort_values("b")

result = sorted["a"]

%v2 = "fireducks.sort_values"(%v1,"b")

%v3 = "fireducks.project"(%v2,["a"])

%v11 = "fireducks.project"(%v1,["a","b"])

%v2 = "fireducks.sort_values"(%v11,"b")

%v3 = "fireducks.project"(%v2,["a"])

tmp = df[["a","b"]]

sorted = tmp.sort_values("b")

result = sorted["a"]

print (result)

© NEC Corporation 202322

Why FireDucks is highly compatible with pandas?

library - A pandas

from_pandas()

to_pandas()

%load_ext fireducks.pandas ← notebook extension for importhook

import pandas as pd

import numpy as np

%%fireducks.profile ← notebook specific profiler

df = pd.DataFrame({

"id": np.random.choice(list("abcdef"), 10000),

"val": np.random.choice(100, 10000)

})

r1 =(

df.sort_values("id")

.groupby("id")

.head(2)

.reset_index(drop=True)

)

r1["val"] = r1["val"].cumsum()

r1.describe()

When running a python script/program, you may

like to set the environment variable to get

fallback warning logs:

FIREDUCKS_FLAGS=“-Wfallback”

Raise feature request when you encounter some

expensive fallback hindering your program

performance!

Directly communicate with us over our slack

channel for any performance or API related

queries!

Python Frontend
(Pandas API)

fallback

IR Builder

FireDucks

https://github.com/fireducks-dev/fireducks/issues
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202323

Demo

https://colab.research.google.com/drive/1qpej-X7CZsIeOqKuhBg4kq-cbGuJf1Zp?usp=sharing

	Title Slide_B
	スライド 1: Introducing FireDucks: A High-performance Compiler-accelerated DataFrame Library

	Body
	スライド 2: Quick Introduction!
	スライド 3: Workflow of a Data Scientist
	スライド 4: Background: What is DataFrame?
	スライド 5: Background: What is pandas?
	スライド 6: Challenges in Data Manipulation with pandas
	スライド 7: Challenges in Migration from pandas
	スライド 8: Introducing FireDucks
	スライド 9: Usage of FireDucks
	スライド 10: Demo
	スライド 11: Why FireDucks is faster?
	スライド 12: Benchmark (1): DB-Benchmark
	スライド 13: Benchmark (2): Speedup from pandas in TPC-H benchmark
	スライド 14: Benchmark (3): Speedup from pandas in TPCx-BB benchmark
	スライド 15: Resource on FireDucks
	スライド 16: Comparison Among Several Python DataFrame Libraries
	スライド 17: User feedback
	スライド 18: Further Technical Details
	スライド 19: Optimization Features
	スライド 20: Domain Specific Optimization (Example #1)
	スライド 21: How does FireDucks Work?
	スライド 22: Why FireDucks is highly compatible with pandas?
	スライド 23: Demo

	Purpose_B
	スライド 24

	Corporate Mark
	スライド 25

