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Quick Introduction!

SOURAV SAHA – Research Engineer @ NEC Corporation

Hello, I am a software professional with 11+ years of working experience across diverse areas of HPC, Vector

Supercomputing, Distributed Programming, Big Data and Machine Learning. Currently, my team at NEC R&D Lab, Japan,

is researching various data processing-related algorithms. Blending the mixture of different niche technologies related to

compiler framework, high-performance computing, and multi-threaded programming, we have developed a Python library

named FireDucks with highly compatible pandas APIs for DataFrame-related operations.

https://www.nec.com/en/global/solutions/hpc/sx/index.html

Data 
Scientists 
often face 
issues with 
slow 
performance 
of pandas

we wanted to 

develop some library 

using compiler 

technology

we wanted to 

speed-up python

User Program

compiler

technologies

FireDucks

groupby join

dropna filter

sort corr

pandas API
Mr. Kazuhisa Ishizaka

(Primary Author)

https://www.linkedin.com/in/sourav-%E3%82%BD%E3%82%A6%E3%83%A9%E3%83%96-saha-%E3%82%B5%E3%83%8F-a5750259/

https://twitter.com/SouravSaha97589

https://twitter.com/SouravSaha97589
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Background: What is pandas?
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◆Most popular Python library for data analytics.
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Drawback of pandas

◼ It (mostly) doesn’t support parallel computation.

◼ It doesn’t manage runtime memory well.

◼ It follows an eager execution model.

◼ It doesn’t have any auto-optimization feature.

◼ The implementation is not optimized for modern processors.

◼ There are many different methods of performing the same analysis in pandas.

◼ The choice of APIs heavily impacts the performance of an application.
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Need for Optimization

Improve in efficiency 

of Data Analysis
Reduction of cloud 

cost

Reduction of CO2 

emission

The amount spent on performing each simulation of an analytical task 

can be significantly reduced, resulting in more productive time for in-

depth data analysis.Data Scientist
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Need for Optimization

If execution can be speed-up by 10x, Cloud cost can 

also be reduced up to 1/10！
Data Engineer

Improve in efficiency 

of Data Analysis
Reduction of cloud 

cost

Reduction of CO2 

emission
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Need for Optimization

Performing long-running simulation on a cluster of 

computers might negatively impact the environment Data Scientist

Improve in efficiency 

of Data Analysis
Reduction of cloud 

cost

Reduction of CO2 

emission
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Execution model

User Program

Library Function

User Program

Runtime

Compiler

python frontend

pandas FireDucks

Library Function

Core

memory

CoreCore Core

Unused

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernelsingle-core execution kernel

compiler optimized programuser program (as it is)

python frontend with JIT compiler
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Optimization Features

User Program

Runtime

Compiler

FireDucks

Library Function

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernel

compiler optimized program

python frontend with JIT compiler

1. Compiler Specific Optimizations: Common Sub-expression 

Elimination, Dead-code Elimination, Constant Folding etc.

2. Domain Specific Optimization: Optimization at query-level: 

reordering instructions etc.

3. Pandas Specific Optimization: selection of suitable pandas 

APIs, selection of suitable parameter etc.

1. Multi-threaded Computation: Leverage all the available 

computational cores.

2. Efficient Memory Management: Data Structures backed by 

Apache Arrow

3. Optimized Kernels: Patented algorithms for Database like 

kernel operations: like sorting, join, filter, groupby, dropna etc. 

developed in C++ from scratch.
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Compiler Specific Optimization (Example #1)

res = pd.DataFrame()

res["industry_wise_avg_sal"] = (
employee[employee["country"] == "India"]
.groupby("industry")["salary"]
.mean()

)

res["industry_wise_avg_sal_for_specific_age_group"] = (
employee[(employee["country"] == "India") & (employee["age"] >= 30)]
.groupby("industry")["salary"]
.mean()

)

# Find the industry-wise average salary of an Indian employee

# Find the industry-wise average salary of an Indian employee who is above 30

res["industry_wise_avg_sal_for_specific_age_group"] = (
employee[cond1 & cond2]
.groupby("industry")["salary"]
.mean()

)

# To generate the required filtration masks in advance

# Find the industry-wise average salary of an Indian employee who is above 30

cond1 = (employee["country"] == "India")
cond2 = (employee["age"] >= 30)
res = pd.DataFrame()

res["industry_wise_avg_sal"] = (
employee[cond1]
.groupby("industry")["salary"]
.mean()

)

# Find the industry-wise average salary of an Indian employee

Common Sub-expression Elimination
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Domain Specific Optimization (Example #1)

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7

1 6 B 2 3 6 3 4 7 8 4

2 5 D 2 4 7 2 3 3 7 8

3 2 A 3 2 8 5 3 2 4 5

4 3 C 5 9 2 3 2 6 2 6

5 8 B 8 1 5 7 1 5 8 3

sorted = df.sort_values(“b”)

-> sidx = [0, 3,1, 5, 4, 2] # get sorted index

-> sorted = df.take(sidx) # materialize result 

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7

3 2 A 3 2 8 5 3 2 4 5

1 6 B 2 3 6 3 4 7 8 4

5 8 B 8 1 5 7 1 5 8 3

4 3 C 5 9 2 3 2 6 2 6

2 5 D 2 4 7 2 3 3 7 8

index a

0 1

3 2

1 6

5 8

4 3

2 5

result = sorted[“a”]
result = sorted[“a”]

index a b

0 1 A

1 6 B

2 5 D

3 2 A

4 3 C

5 8 B

index a b

0 1 A

3 2 A

1 6 B

5 8 B

4 3 C

2 5 D

index a

0 1

3 2

1 6

5 8

4 3

2 5

tmp = df[[“a”, “b”]]

sorted = tmp.sort_values(“b”)

-> sidx = [0, 3, 1, 5, 4, 2]

-> sorted = tmp.take(sidx)

sorted = df.sort_values("b") 

result = sorted["a"] 

tmp = df[["a","b"]] 

sorted = tmp.sort_values("b") 

result = sorted["a"]

projection pushdown

Waste of computational memory 

and execution time
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Domain Specific Optimization (Example #2) (1/2)

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

3 C Female 2

4 E Male 2

5 F Female 1

6 G Female 2

7 H Male 1

8 I Female 2

C_Code C_Name

1 India

2 Japan

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

3 C Female 2 Japan

4 E Male 2 Japan

5 F Female 1 India

6 G Female 2 Japan

7 H Male 1 India

8 I Female 2 Japan

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

4 E Male 2 Japan

7 H Male 1 India

filter

m = employee.merge(country, on=“C_Code”)

f = m[m[“Gender”] == “Male”]

r = f.groupby(“C_Name”)[“E_Name”].count()

print(r)

employee

country

merge

C_Name E_Name

India 3

Japan 2

groupby-

count

• sample case: filter after merge operation

• merge is an expensive operation, as it involves 

data copy.

• performing merge operation on a large dataset 

and then filtering the output would involve 

unnecessary costs in data-copy.
ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

3 C Female 2 Japan

4 E Male 2 Japan

5 F Female 1 India

6 G Female 2 Japan

7 H Male 1 India

8 I Female 2 Japan
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Domain Specific Optimization (Example #2) (2/2)

ID Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

4 E Male 2 Japan

7 H Male 1 India

m = employee.merge(country, on=“C_Code”)

f = m[m[“Gender”] == “Male”]

r = f.groupby(“C_Name”)[“E_Name”].count()

print(r)

f = employee[employee[“Gender”] == “Male”]

m = f.merge(country, on=“C_Code”)

r = m.groupby(“C_Name”)[“E_Name”].count()

print(r)

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

4 E Male 2

7 H Male 1

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

3 C Female 2

4 E Male 2

5 F Female 1

6 G Female 2

7 H Male 1

8 I Female 2

C_Code C_Name

1 India

2 Japan

employee

country

C_Name E_Name

India 3

Japan 2

groupby-

count

filter

merge

predicate pushdown
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Pandas Specific Optimization (Example #1)

res = (
employee.groupby(“department")[“salary"]

.mean()
.sort_values(ascending=False)

)

# department-wise average salaries sorted in descending order

department salary (USD)

IT 85,000

Admin 60,000

Finance 100,000

IT 81,000

Finance 95,000

Corporate 78,000

Sales 80,000

department salary (USD)

IT 85,000

IT 81,000

department salary (USD)

Admin 60,000

department salary (USD)

Finance 100,000

Finance 95,000

department salary (USD)

Corporate 78,000

department salary (USD)

Sales 80,000

department salary (USD)

IT 83,000

Admin 60,000

Finance 97,500

Corporate 78,000

Sales 80,000

department salary (USD)

Admin 60,000

Corporate 78,000

Finance 97,500

IT 83,000

Sales 80,000

department salary (USD)

Finance 97,500

IT 83,000

Sales 80,000

Corporate 78,000

Admin 60,000

res = (
employee.groupby(“department“, sort=False)[“salary"]

.mean()
.sort_values(ascending=False)

)

employee table

creating groups

group-wise average-salary group-wise average-salary 

sorted by “department”
group-wise average-salary 

sorted by “department”

groupby(“department“, sort=True)
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How does FireDucks Work?

Generated 

IR-OPs

User Program

Optimization

Passes

IR Builder

Multi-core Kernel

Executor

sorted = df.sort_values("b") 

result = sorted["a"] 

%v2 = "fireducks.sort_values"(%v1,"b") 

%v3 = "fireducks.project"(%v2,["a"])

%v11 = "fireducks.project"(%v1,["a","b"]) 

%v2 = "fireducks.sort_values"(%v11,"b") 

%v3 = "fireducks.project"(%v2,["a"])

tmp = df[["a","b"]] 

sorted = tmp.sort_values("b") 

result = sorted["a"] 

print (result)
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Usage of FireDucks

1. Import Hook

2. Explicit Import

$ python –m fireducks.pandas program.py 

# import pandas as pd
import fireducks.pandas as pd

FireDucks provides command line option to automatically replace pandas with FireDucks

Zero code modification

User replaces import statement

single line modification (convenient with Jupyter notebook)
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Usage of FireDucks

2. Import Hook

$ python –m fireducks.pandas program.py 

FireDucks provides command line option to automatically replace “pandas” with “fireducks.pandas”

zero code modification

1. Explicit Import

# import pandas as pd
import fireducks.pandas as pd

easy to import

simply change the import statement

3. Notebook Extension

%load_ext fireducks.pandas
import pandas as pd

FireDucks provides simple import extension for interative notebooks.

simple integration in a notebook

import mod_A

import mod_B

import mod_C

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

mod_A.py

mod_B.py

mod_C.py

program.py
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Benchmark: Speedup from pandas in TPC-H benchmark
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Benchmark: FireDucks and Polars
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fireducks is 

faster

polars is 

faster

FireDucks is faster than polars 12x at max (1.9x in average)

Polars: faster DataFrame library with own API (not compatible with pandas)

FireDucks speedup from polars

Xeon Gold 5317
(12 core x 2s)
Memory: 256GB
OS: Linux

pandas 2.2.0
polars 0.20.7
FireDucks 0.10.1
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Benchmark: DB-Benchmark 

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark) 

Groupby Join

rank-1 rank-3
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Resource on FireDucks

https://fireducks-dev.github.io/

Web site (User guide, benchmark, blog)

X(twitter) (Release information)

https://x.com/fireducksdev

Github (Issue report)

https://github.com/fireducks-dev/fireducks

Slack Channel

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w
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User feedback

Due to a significant reduction in execution time, 

I can now focus more on in-depth data analysis.

Easy integration in an existing application in just 

30 mins!
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Why FireDucks is highly compatible with pandas?

library - A pandas

from_pandas()

to_pandas()

%load_ext fireducks.pandas ← notebook extension for importhook

import pandas as pd

import numpy as np

%%fireducks.profile ← notebook specific profiler

df = pd.DataFrame({

"id": np.random.choice(list("abcdef"), 10000),                        

"val": np.random.choice(100, 10000)

})

r1 =( 

df.sort_values("id")

.groupby("id")

.head(2)

.reset_index(drop=True)

)

r1["val"] = r1["val"].cumsum()

r1.describe()

Python Frontend
(Pandas API)

fallback

IR Builder

When running a python script/program, you may 

like to set the environment variable to get 

fallback warning logs:

FIREDUCKS_FLAGS=“-Wfallback” 

Raise feature request when you encounter some 

expensive fallback hindering your program 

performance!

Directly communicate with us over our slack 

channel for any performance or API related 

queries!

pd.from_pandas(r1[“val”].to_pandas().cumsum())

https://github.com/fireducks-dev/fireducks/issues
https://github.com/fireducks-dev/fireducks/issues
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w
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Demo

https://colab.research.google.com/drive/1qpej-X7CZsIeOqKuhBg4kq-cbGuJf1Zp?usp=sharing
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Summary

pandas FireDucks

18x

1.0

Speedup from pandas

FireDucks is a high-performance compiler-accelerated DataFrame library with 
highly compatible pandas APIs.

Speed: significantly faster than pandas 

Ease of use: drop-in replacement of pandas 

average of 22 queries in TPC-H 
benchmark on Xeon 5317x2

• FireDucks is multithreaded to fully exploit modern processor
• FireDucks optimizes user program at runtime by embedded 

runtime compiler

• FireDucks is highly compatible with pandas API 
• No extra learning is required
• No code modification is required
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