
© NEC Corporation 2023

FireDucks – A compiler-accelerated Dataframe Library

July 16, 2024

Sourav Saha

Research Engineer, NEC

© NEC Corporation 20232

Quick Introduction!

SOURAV SAHA – Research Engineer @ NEC Corporation

Hello, I am a software professional with 11+ years of working experience across diverse areas of HPC, Vector

Supercomputing, Distributed Programming, Big Data and Machine Learning. Currently, my team at NEC R&D Lab, Japan,

is researching various data processing-related algorithms. Blending the mixture of different niche technologies related to

compiler framework, high-performance computing, and multi-threaded programming, we have developed a Python library

named FireDucks with highly compatible pandas APIs for DataFrame-related operations.

https://www.nec.com/en/global/solutions/hpc/sx/index.html

Data
Scientists
often face
issues with
slow
performance
of pandas

we wanted to

develop some library

using compiler

technology

we wanted to

speed-up python

User Program

compiler

technologies

FireDucks

groupby join

dropna filter

sort corr

pandas API
Mr. Kazuhisa Ishizaka

(Primary Author)

https://www.linkedin.com/in/sourav-%E3%82%BD%E3%82%A6%E3%83%A9%E3%83%96-saha-%E3%82%B5%E3%83%8F-a5750259/

https://twitter.com/SouravSaha97589

https://twitter.com/SouravSaha97589

© NEC Corporation 20233

Background: What is pandas?

0 50 100 150

numpy

pandas

scipy

scikit-learn

matplotlib

pyspark

networkx

tensorflow

nltk

seaborn

pytorch

Monthly download from pypi.org
(Data Analytics Libraries)

100M 150M50M

https://www.udemy.com/ja/topic/pandas/

Books

Courses

◆Most popular Python library for data analytics.

© NEC Corporation 20234

Drawback of pandas

◼ It (mostly) doesn’t support parallel computation.

◼ It doesn’t manage runtime memory well.

◼ It follows an eager execution model.

◼ It doesn’t have any auto-optimization feature.

◼ The implementation is not optimized for modern processors.

◼ There are many different methods of performing the same analysis in pandas.

◼ The choice of APIs heavily impacts the performance of an application.

© NEC Corporation 20235

Need for Optimization

Improve in efficiency

of Data Analysis
Reduction of cloud

cost

Reduction of CO2

emission

The amount spent on performing each simulation of an analytical task

can be significantly reduced, resulting in more productive time for in-

depth data analysis.Data Scientist

© NEC Corporation 20236

Need for Optimization

If execution can be speed-up by 10x, Cloud cost can

also be reduced up to 1/10！
Data Engineer

Improve in efficiency

of Data Analysis
Reduction of cloud

cost

Reduction of CO2

emission

© NEC Corporation 20237

Need for Optimization

Performing long-running simulation on a cluster of

computers might negatively impact the environment Data Scientist

Improve in efficiency

of Data Analysis
Reduction of cloud

cost

Reduction of CO2

emission

© NEC Corporation 20238

Execution model

User Program

Library Function

User Program

Runtime

Compiler

python frontend

pandas FireDucks

Library Function

Core

memory

CoreCore Core

Unused

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernelsingle-core execution kernel

compiler optimized programuser program (as it is)

python frontend with JIT compiler

© NEC Corporation 20239

Optimization Features

User Program

Runtime

Compiler

FireDucks

Library Function

Core CoreCore Core

All cores used

memory

multithreaded C++ execution kernel

compiler optimized program

python frontend with JIT compiler

1. Compiler Specific Optimizations: Common Sub-expression

Elimination, Dead-code Elimination, Constant Folding etc.

2. Domain Specific Optimization: Optimization at query-level:

reordering instructions etc.

3. Pandas Specific Optimization: selection of suitable pandas

APIs, selection of suitable parameter etc.

1. Multi-threaded Computation: Leverage all the available

computational cores.

2. Efficient Memory Management: Data Structures backed by

Apache Arrow

3. Optimized Kernels: Patented algorithms for Database like

kernel operations: like sorting, join, filter, groupby, dropna etc.

developed in C++ from scratch.

© NEC Corporation 202310

Compiler Specific Optimization (Example #1)

res = pd.DataFrame()

res["industry_wise_avg_sal"] = (
employee[employee["country"] == "India"]
.groupby("industry")["salary"]
.mean()

)

res["industry_wise_avg_sal_for_specific_age_group"] = (
employee[(employee["country"] == "India") & (employee["age"] >= 30)]
.groupby("industry")["salary"]
.mean()

)

Find the industry-wise average salary of an Indian employee

Find the industry-wise average salary of an Indian employee who is above 30

res["industry_wise_avg_sal_for_specific_age_group"] = (
employee[cond1 & cond2]
.groupby("industry")["salary"]
.mean()

)

To generate the required filtration masks in advance

Find the industry-wise average salary of an Indian employee who is above 30

cond1 = (employee["country"] == "India")
cond2 = (employee["age"] >= 30)
res = pd.DataFrame()

res["industry_wise_avg_sal"] = (
employee[cond1]
.groupby("industry")["salary"]
.mean()

)

Find the industry-wise average salary of an Indian employee

Common Sub-expression Elimination

© NEC Corporation 202311

Domain Specific Optimization (Example #1)

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7

1 6 B 2 3 6 3 4 7 8 4

2 5 D 2 4 7 2 3 3 7 8

3 2 A 3 2 8 5 3 2 4 5

4 3 C 5 9 2 3 2 6 2 6

5 8 B 8 1 5 7 1 5 8 3

sorted = df.sort_values(“b”)

-> sidx = [0, 3,1, 5, 4, 2] # get sorted index

-> sorted = df.take(sidx) # materialize result

index a b c d e f g h i j

0 1 A 1 3 4 2 4 1 3 7

3 2 A 3 2 8 5 3 2 4 5

1 6 B 2 3 6 3 4 7 8 4

5 8 B 8 1 5 7 1 5 8 3

4 3 C 5 9 2 3 2 6 2 6

2 5 D 2 4 7 2 3 3 7 8

index a

0 1

3 2

1 6

5 8

4 3

2 5

result = sorted[“a”]
result = sorted[“a”]

index a b

0 1 A

1 6 B

2 5 D

3 2 A

4 3 C

5 8 B

index a b

0 1 A

3 2 A

1 6 B

5 8 B

4 3 C

2 5 D

index a

0 1

3 2

1 6

5 8

4 3

2 5

tmp = df[[“a”, “b”]]

sorted = tmp.sort_values(“b”)

-> sidx = [0, 3, 1, 5, 4, 2]

-> sorted = tmp.take(sidx)

sorted = df.sort_values("b")

result = sorted["a"]

tmp = df[["a","b"]]

sorted = tmp.sort_values("b")

result = sorted["a"]

projection pushdown

Waste of computational memory

and execution time

© NEC Corporation 202312

Domain Specific Optimization (Example #2) (1/2)

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

3 C Female 2

4 E Male 2

5 F Female 1

6 G Female 2

7 H Male 1

8 I Female 2

C_Code C_Name

1 India

2 Japan

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

3 C Female 2 Japan

4 E Male 2 Japan

5 F Female 1 India

6 G Female 2 Japan

7 H Male 1 India

8 I Female 2 Japan

ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

4 E Male 2 Japan

7 H Male 1 India

filter

m = employee.merge(country, on=“C_Code”)

f = m[m[“Gender”] == “Male”]

r = f.groupby(“C_Name”)[“E_Name”].count()

print(r)

employee

country

merge

C_Name E_Name

India 3

Japan 2

groupby-

count

• sample case: filter after merge operation

• merge is an expensive operation, as it involves

data copy.

• performing merge operation on a large dataset

and then filtering the output would involve

unnecessary costs in data-copy.
ID E_Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

3 C Female 2 Japan

4 E Male 2 Japan

5 F Female 1 India

6 G Female 2 Japan

7 H Male 1 India

8 I Female 2 Japan

© NEC Corporation 202313

Domain Specific Optimization (Example #2) (2/2)

ID Name Gender C_Code C_Name

1 A Male 1 India

2 B Male 1 India

4 E Male 2 Japan

7 H Male 1 India

m = employee.merge(country, on=“C_Code”)

f = m[m[“Gender”] == “Male”]

r = f.groupby(“C_Name”)[“E_Name”].count()

print(r)

f = employee[employee[“Gender”] == “Male”]

m = f.merge(country, on=“C_Code”)

r = m.groupby(“C_Name”)[“E_Name”].count()

print(r)

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

4 E Male 2

7 H Male 1

ID E_Name Gender C_Code

1 A Male 1

2 B Male 1

3 C Female 2

4 E Male 2

5 F Female 1

6 G Female 2

7 H Male 1

8 I Female 2

C_Code C_Name

1 India

2 Japan

employee

country

C_Name E_Name

India 3

Japan 2

groupby-

count

filter

merge

predicate pushdown

© NEC Corporation 202314

Pandas Specific Optimization (Example #1)

res = (
employee.groupby(“department")[“salary"]

.mean()
.sort_values(ascending=False)

)

department-wise average salaries sorted in descending order

department salary (USD)

IT 85,000

Admin 60,000

Finance 100,000

IT 81,000

Finance 95,000

Corporate 78,000

Sales 80,000

department salary (USD)

IT 85,000

IT 81,000

department salary (USD)

Admin 60,000

department salary (USD)

Finance 100,000

Finance 95,000

department salary (USD)

Corporate 78,000

department salary (USD)

Sales 80,000

department salary (USD)

IT 83,000

Admin 60,000

Finance 97,500

Corporate 78,000

Sales 80,000

department salary (USD)

Admin 60,000

Corporate 78,000

Finance 97,500

IT 83,000

Sales 80,000

department salary (USD)

Finance 97,500

IT 83,000

Sales 80,000

Corporate 78,000

Admin 60,000

res = (
employee.groupby(“department“, sort=False)[“salary"]

.mean()
.sort_values(ascending=False)

)

employee table

creating groups

group-wise average-salary group-wise average-salary

sorted by “department”
group-wise average-salary

sorted by “department”

groupby(“department“, sort=True)

© NEC Corporation 202315

How does FireDucks Work?

Generated

IR-OPs

User Program

Optimization

Passes

IR Builder

Multi-core Kernel

Executor

sorted = df.sort_values("b")

result = sorted["a"]

%v2 = "fireducks.sort_values"(%v1,"b")

%v3 = "fireducks.project"(%v2,["a"])

%v11 = "fireducks.project"(%v1,["a","b"])

%v2 = "fireducks.sort_values"(%v11,"b")

%v3 = "fireducks.project"(%v2,["a"])

tmp = df[["a","b"]]

sorted = tmp.sort_values("b")

result = sorted["a"]

print (result)

© NEC Corporation 202316

Usage of FireDucks

1. Import Hook

2. Explicit Import

$ python –m fireducks.pandas program.py

import pandas as pd
import fireducks.pandas as pd

FireDucks provides command line option to automatically replace pandas with FireDucks

Zero code modification

User replaces import statement

single line modification (convenient with Jupyter notebook)

© NEC Corporation 202317

Usage of FireDucks

2. Import Hook

$ python –m fireducks.pandas program.py

FireDucks provides command line option to automatically replace “pandas” with “fireducks.pandas”

zero code modification

1. Explicit Import

import pandas as pd
import fireducks.pandas as pd

easy to import

simply change the import statement

3. Notebook Extension

%load_ext fireducks.pandas
import pandas as pd

FireDucks provides simple import extension for interative notebooks.

simple integration in a notebook

import mod_A

import mod_B

import mod_C

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

import pandas as pd

:

mod_A.py

mod_B.py

mod_C.py

program.py

© NEC Corporation 202318

Benchmark: Speedup from pandas in TPC-H benchmark

0.1

1

10

100

Speedup from pandas 2.2.0 (Scale Factor=10)

modin 0.26.1 polars 0.20.7 fireducks 0.9.8

FireDucks is 95x faster than pandas at max Xeon Gold 5317 x2
(24 cores), 256GB

Server

1.3

13x

18x

Comparison of

DataFrame libraries

(average speedup)

FireDucks

Polars

Modin

18x

13x

1.3x

fa
st

e
r

th
a
n

 p
a
n

d
a
s

sl
o

w
e
r

© NEC Corporation 202319

Benchmark: FireDucks and Polars

0.1

1

10

q
0

1

q
0

2

q
0

3

q
0

4

q
0

5

q
0

6

q
0

7

q
0

8

q
0

9

q
1

0

q
1

1

q
1

2

q
1

3

q
1

4

q
1

5

q
1

6

q
1

7

q
1

8

q
1

9

q
2

0

q
2

1

q
2

2

ge
o

m
ea

n

fireducks is

faster

polars is

faster

FireDucks is faster than polars 12x at max (1.9x in average)

Polars: faster DataFrame library with own API (not compatible with pandas)

FireDucks speedup from polars

Xeon Gold 5317
(12 core x 2s)
Memory: 256GB
OS: Linux

pandas 2.2.0
polars 0.20.7
FireDucks 0.10.1

© NEC Corporation 202320

Benchmark: DB-Benchmark

Database-like ops benchmark (https://duckdblabs.github.io/db-benchmark)

Groupby Join

rank-1 rank-3

© NEC Corporation 202321

Resource on FireDucks

https://fireducks-dev.github.io/

Web site (User guide, benchmark, blog)

X(twitter) (Release information)

https://x.com/fireducksdev

Github (Issue report)

https://github.com/fireducks-dev/fireducks

Slack Channel

https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202322

User feedback

Due to a significant reduction in execution time,

I can now focus more on in-depth data analysis.

Easy integration in an existing application in just

30 mins!

© NEC Corporation 202323

Why FireDucks is highly compatible with pandas?

library - A pandas

from_pandas()

to_pandas()

%load_ext fireducks.pandas ← notebook extension for importhook

import pandas as pd

import numpy as np

%%fireducks.profile ← notebook specific profiler

df = pd.DataFrame({

"id": np.random.choice(list("abcdef"), 10000),

"val": np.random.choice(100, 10000)

})

r1 =(

df.sort_values("id")

.groupby("id")

.head(2)

.reset_index(drop=True)

)

r1["val"] = r1["val"].cumsum()

r1.describe()

Python Frontend
(Pandas API)

fallback

IR Builder

When running a python script/program, you may

like to set the environment variable to get

fallback warning logs:

FIREDUCKS_FLAGS=“-Wfallback”

Raise feature request when you encounter some

expensive fallback hindering your program

performance!

Directly communicate with us over our slack

channel for any performance or API related

queries!

pd.from_pandas(r1[“val”].to_pandas().cumsum())

https://github.com/fireducks-dev/fireducks/issues
https://github.com/fireducks-dev/fireducks/issues
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w
https://join.slack.com/t/fireducks/shared_invite/zt-2j4lucmtj-IGR7AWlXO62Lu605pnBJ2w

© NEC Corporation 202324

Demo

https://colab.research.google.com/drive/1qpej-X7CZsIeOqKuhBg4kq-cbGuJf1Zp?usp=sharing

© NEC Corporation 202325

Summary

pandas FireDucks

18x

1.0

Speedup from pandas

FireDucks is a high-performance compiler-accelerated DataFrame library with
highly compatible pandas APIs.

Speed: significantly faster than pandas

Ease of use: drop-in replacement of pandas

average of 22 queries in TPC-H
benchmark on Xeon 5317x2

• FireDucks is multithreaded to fully exploit modern processor
• FireDucks optimizes user program at runtime by embedded

runtime compiler

• FireDucks is highly compatible with pandas API
• No extra learning is required
• No code modification is required

	Title Slide_B
	スライド 1: FireDucks – A compiler-accelerated Dataframe Library

	Body
	スライド 2: Quick Introduction!
	スライド 3: Background: What is pandas?
	スライド 4: Drawback of pandas
	スライド 5: Need for Optimization
	スライド 6: Need for Optimization
	スライド 7: Need for Optimization
	スライド 8: Execution model
	スライド 9: Optimization Features
	スライド 10: Compiler Specific Optimization (Example #1)
	スライド 11: Domain Specific Optimization (Example #1)
	スライド 12: Domain Specific Optimization (Example #2) (1/2)
	スライド 13: Domain Specific Optimization (Example #2) (2/2)
	スライド 14: Pandas Specific Optimization (Example #1)
	スライド 15: How does FireDucks Work?
	スライド 16: Usage of FireDucks
	スライド 17: Usage of FireDucks
	スライド 18: Benchmark: Speedup from pandas in TPC-H benchmark
	スライド 19: Benchmark: FireDucks and Polars
	スライド 20: Benchmark: DB-Benchmark
	スライド 21: Resource on FireDucks
	スライド 22: User feedback
	スライド 23: Why FireDucks is highly compatible with pandas?
	スライド 24: Demo
	スライド 25: Summary

	Purpose_B
	スライド 26

	Corporate Mark
	スライド 27

